LCM( 72, 96, 120 ) = 1440
Step 1: Write down factorisation of each number:
72 = 2 · 2 · 2 · 3 · 3
96 = 2 · 2 · 2 · 2 · 2 · 3
120 = 2 · 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | = | 1440 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.