LCM( 72, 120, 168 ) = 2520
Step 1: Write down factorisation of each number:
72 = 2 · 2 · 2 · 3 · 3
120 = 2 · 2 · 2 · 3 · 5
168 = 2 · 2 · 2 · 3 · 7
Step 2 : Match primes vertically:
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||
168 | = | 2 | · | 2 | · | 2 | · | 3 | · | 7 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||
168 | = | 2 | · | 2 | · | 2 | · | 3 | · | 7 | ||||||
LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 7 | = | 2520 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.