LCM( 660, 1386, 2310 ) = 13860
Step 1: Write down factorisation of each number:
660 = 2 · 2 · 3 · 5 · 11
1386 = 2 · 3 · 3 · 7 · 11
2310 = 2 · 3 · 5 · 7 · 11
Step 2 : Match primes vertically:
660 | = | 2 | · | 2 | · | 3 | · | 5 | · | 11 | ||||
1386 | = | 2 | · | 3 | · | 3 | · | 7 | · | 11 | ||||
2310 | = | 2 | · | 3 | · | 5 | · | 7 | · | 11 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
660 | = | 2 | · | 2 | · | 3 | · | 5 | · | 11 | ||||||
1386 | = | 2 | · | 3 | · | 3 | · | 7 | · | 11 | ||||||
2310 | = | 2 | · | 3 | · | 5 | · | 7 | · | 11 | ||||||
LCM | = | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 7 | · | 11 | = | 13860 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.