LCM( 60, 96 ) = 480
Step 1: Write down factorisation of each number:
60 = 2 · 2 · 3 · 5
96 = 2 · 2 · 2 · 2 · 2 · 3
Step 2 : Match primes vertically:
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | = | 480 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.