LCM( 60, 84, 208 ) = 21840
Step 1: Write down factorisation of each number:
60 = 2 · 2 · 3 · 5
84 = 2 · 2 · 3 · 7
208 = 2 · 2 · 2 · 2 · 13
Step 2 : Match primes vertically:
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||
84 | = | 2 | · | 2 | · | 3 | · | 7 | ||||||||
208 | = | 2 | · | 2 | · | 2 | · | 2 | · | 13 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||||
84 | = | 2 | · | 2 | · | 3 | · | 7 | ||||||||||
208 | = | 2 | · | 2 | · | 2 | · | 2 | · | 13 | ||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 7 | · | 13 | = | 21840 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.