LCM( 60, 80, 124 ) = 7440
Step 1: Write down factorisation of each number:
60 = 2 · 2 · 3 · 5
80 = 2 · 2 · 2 · 2 · 5
124 = 2 · 2 · 31
Step 2 : Match primes vertically:
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||
124 | = | 2 | · | 2 | · | 31 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||
124 | = | 2 | · | 2 | · | 31 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 31 | = | 7440 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.