LCM( 6, 8, 60 ) = 120
Step 1: Write down factorisation of each number:
6 = 2 · 3
8 = 2 · 2 · 2
60 = 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
6 | = | 2 | · | 3 | ||||||
8 | = | 2 | · | 2 | · | 2 | ||||
60 | = | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
6 | = | 2 | · | 3 | ||||||||
8 | = | 2 | · | 2 | · | 2 | ||||||
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||
LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | = | 120 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.