LCM( 50, 56, 105 ) = 4200
Step 1: Write down factorisation of each number:
50 = 2 · 5 · 5
56 = 2 · 2 · 2 · 7
105 = 3 · 5 · 7
Step 2 : Match primes vertically:
50 | = | 2 | · | 5 | · | 5 | ||||||||
56 | = | 2 | · | 2 | · | 2 | · | 7 | ||||||
105 | = | 3 | · | 5 | · | 7 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
50 | = | 2 | · | 5 | · | 5 | ||||||||||
56 | = | 2 | · | 2 | · | 2 | · | 7 | ||||||||
105 | = | 3 | · | 5 | · | 7 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 5 | · | 7 | = | 4200 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.