LCM( 48, 60, 110 ) = 2640
Step 1: Write down factorisation of each number:
48 = 2 · 2 · 2 · 2 · 3
60 = 2 · 2 · 3 · 5
110 = 2 · 5 · 11
Step 2 : Match primes vertically:
48 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||
110 | = | 2 | · | 5 | · | 11 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
48 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||
110 | = | 2 | · | 5 | · | 11 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 11 | = | 2640 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.