LCM( 45, 84, 90 ) = 1260
Step 1: Write down factorisation of each number:
45 = 3 · 3 · 5
84 = 2 · 2 · 3 · 7
90 = 2 · 3 · 3 · 5
Step 2 : Match primes vertically:
45 | = | 3 | · | 3 | · | 5 | ||||||
84 | = | 2 | · | 2 | · | 3 | · | 7 | ||||
90 | = | 2 | · | 3 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
45 | = | 3 | · | 3 | · | 5 | ||||||||
84 | = | 2 | · | 2 | · | 3 | · | 7 | ||||||
90 | = | 2 | · | 3 | · | 3 | · | 5 | ||||||
LCM | = | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 7 | = | 1260 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.