LCM( 45, 25, 50 ) = 450
Step 1: Write down factorisation of each number:
45 = 3 · 3 · 5
25 = 5 · 5
50 = 2 · 5 · 5
Step 2 : Match primes vertically:
45 | = | 3 | · | 3 | · | 5 | ||||
25 | = | 5 | · | 5 | ||||||
50 | = | 2 | · | 5 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
45 | = | 3 | · | 3 | · | 5 | ||||||
25 | = | 5 | · | 5 | ||||||||
50 | = | 2 | · | 5 | · | 5 | ||||||
LCM | = | 2 | · | 3 | · | 3 | · | 5 | · | 5 | = | 450 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.