LCM( 3600, 60 ) = 3600
Step 1: Write down factorisation of each number:
3600 = 2 · 2 · 2 · 2 · 3 · 3 · 5 · 5
60 = 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
3600 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 5 |
60 | = | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
3600 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 5 | ||
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 5 | = | 3600 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.