LCM( 32, 80, 192 ) = 960
Step 1: Write down factorisation of each number:
32 = 2 · 2 · 2 · 2 · 2
80 = 2 · 2 · 2 · 2 · 5
192 = 2 · 2 · 2 · 2 · 2 · 2 · 3
Step 2 : Match primes vertically:
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||
192 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||||
80 | = | 2 | · | 2 | · | 2 | · | 2 | · | 5 | ||||||||
192 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | = | 960 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.