LCM( 32, 16, 12 ) = 96
Step 1: Write down factorisation of each number:
32 = 2 · 2 · 2 · 2 · 2
16 = 2 · 2 · 2 · 2
12 = 2 · 2 · 3
Step 2 : Match primes vertically:
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||
16 | = | 2 | · | 2 | · | 2 | · | 2 | ||||
12 | = | 2 | · | 2 | · | 3 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||
16 | = | 2 | · | 2 | · | 2 | · | 2 | ||||||
12 | = | 2 | · | 2 | · | 3 | ||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | = | 96 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.