LCM( 3020, 2835, 3125 ) = 1070212500
Step 1: Write down factorisation of each number:
3020 = 2 · 2 · 5 · 151
2835 = 3 · 3 · 3 · 3 · 5 · 7
3125 = 5 · 5 · 5 · 5 · 5
Step 2 : Match primes vertically:
3020 | = | 2 | · | 2 | · | 5 | · | 151 | ||||||||||||||||||
2835 | = | 3 | · | 3 | · | 3 | · | 3 | · | 5 | · | 7 | ||||||||||||||
3125 | = | 5 | · | 5 | · | 5 | · | 5 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
3020 | = | 2 | · | 2 | · | 5 | · | 151 | ||||||||||||||||||||
2835 | = | 3 | · | 3 | · | 3 | · | 3 | · | 5 | · | 7 | ||||||||||||||||
3125 | = | 5 | · | 5 | · | 5 | · | 5 | · | 5 | ||||||||||||||||||
LCM | = | 2 | · | 2 | · | 3 | · | 3 | · | 3 | · | 3 | · | 5 | · | 5 | · | 5 | · | 5 | · | 5 | · | 7 | · | 151 | = | 1070212500 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.