LCM( 30, 96, 150 ) = 2400
Step 1: Write down factorisation of each number:
30 = 2 · 3 · 5
96 = 2 · 2 · 2 · 2 · 2 · 3
150 = 2 · 3 · 5 · 5
Step 2 : Match primes vertically:
30 | = | 2 | · | 3 | · | 5 | ||||||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||
150 | = | 2 | · | 3 | · | 5 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
30 | = | 2 | · | 3 | · | 5 | ||||||||||||
96 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | ||||||
150 | = | 2 | · | 3 | · | 5 | · | 5 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 5 | = | 2400 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.