LCM( 24, 45, 72 ) = 360
Step 1: Write down factorisation of each number:
24 = 2 · 2 · 2 · 3
45 = 3 · 3 · 5
72 = 2 · 2 · 2 · 3 · 3
Step 2 : Match primes vertically:
24 | = | 2 | · | 2 | · | 2 | · | 3 | ||||
45 | = | 3 | · | 3 | · | 5 | ||||||
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
24 | = | 2 | · | 2 | · | 2 | · | 3 | ||||||
45 | = | 3 | · | 3 | · | 5 | ||||||||
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||
LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | = | 360 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.