LCM( 224, 280, 336 ) = 3360
Step 1: Write down factorisation of each number:
224 = 2 · 2 · 2 · 2 · 2 · 7
280 = 2 · 2 · 2 · 5 · 7
336 = 2 · 2 · 2 · 2 · 3 · 7
Step 2 : Match primes vertically:
224 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 7 | ||||
280 | = | 2 | · | 2 | · | 2 | · | 5 | · | 7 | ||||||
336 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 7 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
224 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 7 | ||||||
280 | = | 2 | · | 2 | · | 2 | · | 5 | · | 7 | ||||||||
336 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 7 | ||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 7 | = | 3360 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.