LCM( 22, 32, 60 ) = 5280
Step 1: Write down factorisation of each number:
22 = 2 · 11
32 = 2 · 2 · 2 · 2 · 2
60 = 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
22 | = | 2 | · | 11 | ||||||||||||
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||
60 | = | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
22 | = | 2 | · | 11 | ||||||||||||||
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||||
60 | = | 2 | · | 2 | · | 3 | · | 5 | ||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 11 | = | 5280 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.