LCM( 20, 45, 120 ) = 360
Step 1: Write down factorisation of each number:
20 = 2 · 2 · 5
45 = 3 · 3 · 5
120 = 2 · 2 · 2 · 3 · 5
Step 2 : Match primes vertically:
20 | = | 2 | · | 2 | · | 5 | ||||||
45 | = | 3 | · | 3 | · | 5 | ||||||
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
20 | = | 2 | · | 2 | · | 5 | ||||||||
45 | = | 3 | · | 3 | · | 5 | ||||||||
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||
LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | = | 360 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.