LCM( 15, 140, 32 ) = 3360
Step 1: Write down factorisation of each number:
15 = 3 · 5
140 = 2 · 2 · 5 · 7
32 = 2 · 2 · 2 · 2 · 2
Step 2 : Match primes vertically:
15 | = | 3 | · | 5 | ||||||||||||
140 | = | 2 | · | 2 | · | 5 | · | 7 | ||||||||
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
15 | = | 3 | · | 5 | ||||||||||||||
140 | = | 2 | · | 2 | · | 5 | · | 7 | ||||||||||
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 7 | = | 3360 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.