LCM( 144, 72, 265 ) = 38160
Step 1: Write down factorisation of each number:
144 = 2 · 2 · 2 · 2 · 3 · 3
72 = 2 · 2 · 2 · 3 · 3
265 = 5 · 53
Step 2 : Match primes vertically:
144 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||
265 | = | 5 | · | 53 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
144 | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||
72 | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | ||||||||
265 | = | 5 | · | 53 | ||||||||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 53 | = | 38160 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.