LCM( 120, 150, 180 ) = 1800
Step 1: Write down factorisation of each number:
120 = 2 · 2 · 2 · 3 · 5
150 = 2 · 3 · 5 · 5
180 = 2 · 2 · 3 · 3 · 5
Step 2 : Match primes vertically:
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||
150 | = | 2 | · | 3 | · | 5 | · | 5 | ||||||
180 | = | 2 | · | 2 | · | 3 | · | 3 | · | 5 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
120 | = | 2 | · | 2 | · | 2 | · | 3 | · | 5 | ||||||
150 | = | 2 | · | 3 | · | 5 | · | 5 | ||||||||
180 | = | 2 | · | 2 | · | 3 | · | 3 | · | 5 | ||||||
LCM | = | 2 | · | 2 | · | 2 | · | 3 | · | 3 | · | 5 | · | 5 | = | 1800 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.