LCM( 12, 50, 64 ) = 4800
Step 1: Write down factorisation of each number:
12 = 2 · 2 · 3
50 = 2 · 5 · 5
64 = 2 · 2 · 2 · 2 · 2 · 2
Step 2 : Match primes vertically:
12 | = | 2 | · | 2 | · | 3 | ||||||||||||
50 | = | 2 | · | 5 | · | 5 | ||||||||||||
64 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
12 | = | 2 | · | 2 | · | 3 | ||||||||||||||
50 | = | 2 | · | 5 | · | 5 | ||||||||||||||
64 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | · | 5 | · | 5 | = | 4800 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.