LCM( 12, 32, 64 ) = 192
Step 1: Write down factorisation of each number:
12 = 2 · 2 · 3
32 = 2 · 2 · 2 · 2 · 2
64 = 2 · 2 · 2 · 2 · 2 · 2
Step 2 : Match primes vertically:
12 | = | 2 | · | 2 | · | 3 | ||||||||
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||
64 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 |
Step 3 : Bring down numbers in each column and multiply to get LCM:
12 | = | 2 | · | 2 | · | 3 | ||||||||||
32 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||||
64 | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | ||||
LCM | = | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 2 | · | 3 | = | 192 |
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.