LCM( 9800, 420, 2520 ) = 88200
Step 1 : Place the numbers inside division bar:
9800 | 420 | 2520 |
Step 2 : Find a prime number which can divide at least two of your numbers.
In this example we can divide by 2. If any number is not divisible by 2 write it down unchanged.
2 | 9800 | 420 | 2520 |
4900 | 210 | 1260 |
Step 3 : Repeat Step 2 until you can no longer divide.
2 | 9800 | 420 | 2520 |
2 | 4900 | 210 | 1260 |
2450 | 105 | 630 |
2 | 9800 | 420 | 2520 |
2 | 4900 | 210 | 1260 |
2 | 2450 | 105 | 630 |
1225 | 105 | 315 |
2 | 9800 | 420 | 2520 |
2 | 4900 | 210 | 1260 |
2 | 2450 | 105 | 630 |
5 | 1225 | 105 | 315 |
245 | 21 | 63 |
2 | 9800 | 420 | 2520 |
2 | 4900 | 210 | 1260 |
2 | 2450 | 105 | 630 |
5 | 1225 | 105 | 315 |
7 | 245 | 21 | 63 |
35 | 3 | 9 |
2 | 9800 | 420 | 2520 |
2 | 4900 | 210 | 1260 |
2 | 2450 | 105 | 630 |
5 | 1225 | 105 | 315 |
7 | 245 | 21 | 63 |
3 | 35 | 3 | 9 |
35 | 1 | 3 |
Since there are no primes that divides at least two of given numbers, we conclude that the LCM is a product of starting numbers.
LCM = 9800 · 420 · 2520 = 88200
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.