LCM( 1296, 1296 ) = 1296
Step 1 : Place the numbers inside division bar:
1296 | 1296 |
Step 2 : Find a prime number which divides both numbers.
In this example we can divide by 2. If any number is not divisible by 2 write it down unchanged.
2 | 1296 | 1296 |
648 | 648 |
Step 3 : Repeat Step 2 until you can no longer divide.
2 | 1296 | 1296 |
2 | 648 | 648 |
324 | 324 |
2 | 1296 | 1296 |
2 | 648 | 648 |
2 | 324 | 324 |
162 | 162 |
2 | 1296 | 1296 |
2 | 648 | 648 |
2 | 324 | 324 |
2 | 162 | 162 |
81 | 81 |
2 | 1296 | 1296 |
2 | 648 | 648 |
2 | 324 | 324 |
2 | 162 | 162 |
3 | 81 | 81 |
27 | 27 |
2 | 1296 | 1296 |
2 | 648 | 648 |
2 | 324 | 324 |
2 | 162 | 162 |
3 | 81 | 81 |
3 | 27 | 27 |
9 | 9 |
2 | 1296 | 1296 |
2 | 648 | 648 |
2 | 324 | 324 |
2 | 162 | 162 |
3 | 81 | 81 |
3 | 27 | 27 |
3 | 9 | 9 |
3 | 3 |
2 | 1296 | 1296 |
2 | 648 | 648 |
2 | 324 | 324 |
2 | 162 | 162 |
3 | 81 | 81 |
3 | 27 | 27 |
3 | 9 | 9 |
3 | 3 | 3 |
1 | 1 |
Since there are no primes that divides at least two of given numbers, we conclude that the LCM is a product of starting numbers.
LCM = 1296 · 1296 = 1296
This solution can be visualized using a Venn diagram.
The LCM is equal to the product of all the numbers on the diagram.