back to index
Answer
$$ = -{{4\,\sqrt{3}\,\sqrt[3]{36}\,\ln \left(x^2-\sqrt[3]{6} \,x+\sqrt[3]{36}\right)-24\sqrt{3}\,\sqrt[3]{6} \,\ln \left(x^2-\sqrt[3]{6}\,x+\sqrt[3]{36}\right)+4\,3 ^{{{5}\over{2}}}\,\ln \left(x^2-\sqrt[3]{6}\,x+6^{{{2}\over{3 }}}\right)-24\sqrt[3]{36}\,\arctan \left({{2\,x-6^{{{1}\over{3 }}}}\over{\sqrt{3}\,\sqrt[3]{6}}}\right)+216\,\arctan \left({{ 2\,x-\sqrt[3]{6}}\over{\sqrt{3}\,\sqrt[3]{6}}}\right)-8 \,\sqrt{3}\,\sqrt[3]{36}\,\ln \left(x+\sqrt[3]{6}\right) -24\sqrt{3}\,\sqrt[3]{6}\,\ln \left(x+6^{{{1}\over{ 3}}}\right)-72\sqrt{3}\,\ln \left(x+\sqrt[3]{6} \right)-9\sqrt{3}\,\sqrt[3]{6}\,x^4+2\,3^{{{7}\over{2 }}}\,\sqrt[3]{6}\,x^2}\over{36\sqrt{3}\,6^{{{1 }\over{3}}}}} $$
Explanation
This page was created using
Integral Calculator