back to index
Answer
$$ = {{13\,\sqrt{6}\,x\,\ln \left(2\,x^2+3\right)+26\,\sqrt{6}\,\ln \left(2\,x^2+3\right)-26\,\sqrt{6}\,x\,\ln \left(x+2\right)-52\, \sqrt{6}\,\ln \left(x+2\right)+28\,x\,\arctan \left({{2\,x}\over{ \sqrt{6}}}\right)+56\,\arctan \left({{2\,x}\over{\sqrt{6}}}\right)- 176\,\sqrt{6}}\over{242\,\sqrt{6}\,\left(x+2\right)}} $$
Explanation
This page was created using
Integral Calculator