STEP 1: find side $ a $
To find side $ a $ use formula:
$$ A = \dfrac{ 3 \sqrt{ 3 } \cdot a^2 }{ 2 }$$After substituting $A = 539.16\, \text{cm}$ we have:
$$ 539.16\, \text{cm} = \dfrac{ 3 \sqrt{ 3 } \cdot a^2 }{ 2 }$$ $$ 539.16\, \text{cm} \cdot 2 = 3 \sqrt{ 3 } \cdot a^2 $$ $$ 1078.32\, \text{cm} = 3 \sqrt{ 3 } \cdot a^2 $$ $$ a^2 = \dfrac{ 1078.32\, \text{cm} }{ 3 \sqrt{ 3 } } $$ $$ a^2 = 207.5228\, \text{cm} $$ $$ a = \sqrt{ 207.5228\, \text{cm} } $$$$ a \approx 14.4057 $$STEP 2:
The radius of the circumcircle is equal the side of the hexagon. $$ R = 14.4057 $$