The GCD of given numbers is 140.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}9800 =& 2\cdot2\cdot2\cdot5\cdot5\cdot7\cdot7\\[8pt]420 =& 2\cdot2\cdot3\cdot5\cdot7\\[8pt]2520 =& 2\cdot2\cdot2\cdot3\cdot3\cdot5\cdot7\\[8pt]\end{aligned}$$(view steps on how to factor 9800, 420 and 2520. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}9800 =& \color{blue}{\boxed{2}}\cdot\color{red}{\boxed{2}}\cdot2\cdot\color{Fuchsia}{\boxed{5}}\cdot5\cdot\color{Orange}{\boxed{7}}\cdot7\\[8pt]420 =& \color{blue}{\boxed{2}}\cdot\color{red}{\boxed{2}}\cdot3\cdot\color{Fuchsia}{\boxed{5}}\cdot\color{Orange}{\boxed{7}}\\[8pt]2520 =& \color{blue}{\boxed{2}}\cdot\color{red}{\boxed{2}}\cdot2\cdot3\cdot3\cdot\color{Fuchsia}{\boxed{5}}\cdot\color{Orange}{\boxed{7}}\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 2\cdot2\cdot5\cdot7 = 140 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.