The GCD of given numbers is 206.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}618 =& 2\cdot3\cdot103\\[8pt]1030 =& 2\cdot5\cdot103\\[8pt]1442 =& 2\cdot7\cdot103\\[8pt]\end{aligned}$$(view steps on how to factor 618, 1030 and 1442. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}618 =& \color{blue}{\boxed{2}}\cdot3\cdot\color{red}{\boxed{103}}\\[8pt]1030 =& \color{blue}{\boxed{2}}\cdot5\cdot\color{red}{\boxed{103}}\\[8pt]1442 =& \color{blue}{\boxed{2}}\cdot7\cdot\color{red}{\boxed{103}}\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 2\cdot103 = 206 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.