The GCD of given numbers is 42525.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}5740875 =& 3\cdot3\cdot3\cdot3\cdot3\cdot3\cdot3\cdot3\cdot5\cdot5\cdot5\cdot7\\[8pt]4762800 =& 2\cdot2\cdot2\cdot2\cdot3\cdot3\cdot3\cdot3\cdot3\cdot5\cdot5\cdot7\cdot7\\[8pt]\end{aligned}$$(view steps on how to factor 5740875 and 4762800. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}5740875 =& \color{blue}{\boxed{3}}\cdot\color{red}{\boxed{3}}\cdot\color{Fuchsia}{\boxed{3}}\cdot\color{Orange}{\boxed{3}}\cdot\color{Purple}{\boxed{3}}\cdot3\cdot3\cdot3\cdot\color{blue}{\boxed{5}}\cdot\color{red}{\boxed{5}}\cdot5\cdot\color{Fuchsia}{\boxed{7}}\\[8pt]4762800 =& 2\cdot2\cdot2\cdot2\cdot\color{blue}{\boxed{3}}\cdot\color{red}{\boxed{3}}\cdot\color{Fuchsia}{\boxed{3}}\cdot\color{Orange}{\boxed{3}}\cdot\color{Purple}{\boxed{3}}\cdot\color{blue}{\boxed{5}}\cdot\color{red}{\boxed{5}}\cdot\color{Fuchsia}{\boxed{7}}\cdot7\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 3\cdot3\cdot3\cdot3\cdot3\cdot5\cdot5\cdot7 = 42525 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.