The GCD of given numbers is 2.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}500 =& 2\cdot2\cdot5\cdot5\cdot5\\[8pt]330 =& 2\cdot3\cdot5\cdot11\\[8pt]384 =& 2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot3\\[8pt]\end{aligned}$$(view steps on how to factor 500, 330 and 384. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}500 =& \color{blue}{\boxed{2}}\cdot2\cdot5\cdot5\cdot5\\[8pt]330 =& \color{blue}{\boxed{2}}\cdot3\cdot5\cdot11\\[8pt]384 =& \color{blue}{\boxed{2}}\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot3\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 2 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.