The GCD of given numbers is 135.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}405 =& 3\cdot3\cdot3\cdot3\cdot5\\[8pt]945 =& 3\cdot3\cdot3\cdot5\cdot7\\[8pt]\end{aligned}$$(view steps on how to factor 405 and 945. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}405 =& \color{blue}{\boxed{3}}\cdot\color{red}{\boxed{3}}\cdot\color{Fuchsia}{\boxed{3}}\cdot3\cdot\color{Orange}{\boxed{5}}\\[8pt]945 =& \color{blue}{\boxed{3}}\cdot\color{red}{\boxed{3}}\cdot\color{Fuchsia}{\boxed{3}}\cdot\color{Orange}{\boxed{5}}\cdot7\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 3\cdot3\cdot3\cdot5 = 135 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.