The GCD of given numbers is 1.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}216 =& 2\cdot2\cdot2\cdot3\cdot3\cdot3\\[8pt]900 =& 2\cdot2\cdot3\cdot3\cdot5\cdot5\\[8pt]36 =& 2\cdot2\cdot3\cdot3\\[8pt]120 =& 2\cdot2\cdot2\cdot3\cdot5\\[8pt]144 =& 2\cdot2\cdot2\cdot2\cdot3\cdot3\\[8pt]108 =& 2\cdot2\cdot3\cdot3\cdot3\\[8pt]49 =& 7\cdot7\\[8pt]60 =& 2\cdot2\cdot3\cdot5\\[8pt]150 =& 2\cdot3\cdot5\cdot5\\[8pt]25 =& 5\cdot5\\[8pt]\end{aligned}$$(view steps on how to factor 216, 900, 36, 120, 144, 108, 49, 60, 150 and 25. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}216 =& 2\cdot2\cdot2\cdot3\cdot3\cdot3\\[8pt]900 =& 2\cdot2\cdot3\cdot3\cdot5\cdot5\\[8pt]36 =& 2\cdot2\cdot3\cdot3\\[8pt]120 =& 2\cdot2\cdot2\cdot3\cdot5\\[8pt]144 =& 2\cdot2\cdot2\cdot2\cdot3\cdot3\\[8pt]108 =& 2\cdot2\cdot3\cdot3\cdot3\\[8pt]49 =& 7\cdot7\\[8pt]60 =& 2\cdot2\cdot3\cdot5\\[8pt]150 =& 2\cdot3\cdot5\cdot5\\[8pt]25 =& 5\cdot5\\[8pt]\end{aligned}$$Note that in this example numbers do not have any common factors.
Step 3 : Multiply the boxed numbers together:
Since there is no boxed numbers we conclude that $~\color{blue}{ \text{GCD = 1} } $.