The GCD of given numbers is 105.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}210 =& 2\cdot3\cdot5\cdot7\\[8pt]315 =& 3\cdot3\cdot5\cdot7\\[8pt]\end{aligned}$$(view steps on how to factor 210 and 315. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}210 =& 2\cdot\color{blue}{\boxed{3}}\cdot\color{red}{\boxed{5}}\cdot\color{Fuchsia}{\boxed{7}}\\[8pt]315 =& \color{blue}{\boxed{3}}\cdot3\cdot\color{red}{\boxed{5}}\cdot\color{Fuchsia}{\boxed{7}}\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 3\cdot5\cdot7 = 105 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.