The GCD of given numbers is 30.
Step 1 : Find prime factorization of each number.
$$\begin{aligned}150 =& 2\cdot3\cdot5\cdot5\\[8pt]360 =& 2\cdot2\cdot2\cdot3\cdot3\cdot5\\[8pt]900 =& 2\cdot2\cdot3\cdot3\cdot5\cdot5\\[8pt]\end{aligned}$$(view steps on how to factor 150, 360 and 900. )
Step 2 : Put a box around factors that are common for all numbers:
$$\begin{aligned}150 =& \color{blue}{\boxed{2}}\cdot\color{red}{\boxed{3}}\cdot\color{Fuchsia}{\boxed{5}}\cdot5\\[8pt]360 =& \color{blue}{\boxed{2}}\cdot2\cdot2\cdot\color{red}{\boxed{3}}\cdot3\cdot\color{Fuchsia}{\boxed{5}}\\[8pt]900 =& \color{blue}{\boxed{2}}\cdot2\cdot\color{red}{\boxed{3}}\cdot3\cdot\color{Fuchsia}{\boxed{5}}\cdot5\\[8pt]\end{aligned}$$Step 3 : Multiply the boxed numbers together:
$$ GCD = 2\cdot3\cdot5 = 30 $$This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.