The GCD of given numbers is 1.
Step 1 :
Divide by and get the remainder
The remainder is positive (), so we will continue with division.
Step 2 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 3 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 4 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 5 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 6 :
Divide by and get the remainder
The remainder is zero => GCD is the last divisor .
We can summarize an algorithm into a following table.
775 | : | 231 | = | 3 | remainder ( 82 ) | ||||||||||
231 | : | 82 | = | 2 | remainder ( 67 ) | ||||||||||
82 | : | 67 | = | 1 | remainder ( 15 ) | ||||||||||
67 | : | 15 | = | 4 | remainder ( 7 ) | ||||||||||
15 | : | 7 | = | 2 | remainder ( 1 ) | ||||||||||
7 | : | 1 | = | 7 | remainder ( 0 ) | ||||||||||
GCD = 1 |
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.