The GCD of given numbers is 1.
Step 1 :
Divide by and get the remainder
The remainder is positive (), so we will continue with division.
Step 2 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 3 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 4 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 5 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 6 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 7 :
Divide by and get the remainder
The remainder is still positive (), so we will continue with division.
Step 8 :
Divide by and get the remainder
The remainder is zero => GCD is the last divisor .
We can summarize an algorithm into a following table.
1586 | : | 899 | = | 1 | remainder ( 687 ) | ||||||||||||||
899 | : | 687 | = | 1 | remainder ( 212 ) | ||||||||||||||
687 | : | 212 | = | 3 | remainder ( 51 ) | ||||||||||||||
212 | : | 51 | = | 4 | remainder ( 8 ) | ||||||||||||||
51 | : | 8 | = | 6 | remainder ( 3 ) | ||||||||||||||
8 | : | 3 | = | 2 | remainder ( 2 ) | ||||||||||||||
3 | : | 2 | = | 1 | remainder ( 1 ) | ||||||||||||||
2 | : | 1 | = | 2 | remainder ( 0 ) | ||||||||||||||
GCD = 1 |
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.