The GCD of given numbers is 1.
Step 1 :
Divide $ 139024789 $ by $ 93278890 $ and get the remainder
The remainder is positive ($ 45745899 > 0 $), so we will continue with division.
Step 2 :
Divide $ 93278890 $ by $ \color{blue}{ 45745899 } $ and get the remainder
The remainder is still positive ($ 1787092 > 0 $), so we will continue with division.
Step 3 :
Divide $ 45745899 $ by $ \color{blue}{ 1787092 } $ and get the remainder
The remainder is still positive ($ 1068599 > 0 $), so we will continue with division.
Step 4 :
Divide $ 1787092 $ by $ \color{blue}{ 1068599 } $ and get the remainder
The remainder is still positive ($ 718493 > 0 $), so we will continue with division.
Step 5 :
Divide $ 1068599 $ by $ \color{blue}{ 718493 } $ and get the remainder
The remainder is still positive ($ 350106 > 0 $), so we will continue with division.
Step 6 :
Divide $ 718493 $ by $ \color{blue}{ 350106 } $ and get the remainder
The remainder is still positive ($ 18281 > 0 $), so we will continue with division.
Step 7 :
Divide $ 350106 $ by $ \color{blue}{ 18281 } $ and get the remainder
The remainder is still positive ($ 2767 > 0 $), so we will continue with division.
Step 8 :
Divide $ 18281 $ by $ \color{blue}{ 2767 } $ and get the remainder
The remainder is still positive ($ 1679 > 0 $), so we will continue with division.
Step 9 :
Divide $ 2767 $ by $ \color{blue}{ 1679 } $ and get the remainder
The remainder is still positive ($ 1088 > 0 $), so we will continue with division.
Step 10 :
Divide $ 1679 $ by $ \color{blue}{ 1088 } $ and get the remainder
The remainder is still positive ($ 591 > 0 $), so we will continue with division.
Step 11 :
Divide $ 1088 $ by $ \color{blue}{ 591 } $ and get the remainder
The remainder is still positive ($ 497 > 0 $), so we will continue with division.
Step 12 :
Divide $ 591 $ by $ \color{blue}{ 497 } $ and get the remainder
The remainder is still positive ($ 94 > 0 $), so we will continue with division.
Step 13 :
Divide $ 497 $ by $ \color{blue}{ 94 } $ and get the remainder
The remainder is still positive ($ 27 > 0 $), so we will continue with division.
Step 14 :
Divide $ 94 $ by $ \color{blue}{ 27 } $ and get the remainder
The remainder is still positive ($ 13 > 0 $), so we will continue with division.
Step 15 :
Divide $ 27 $ by $ \color{blue}{ 13 } $ and get the remainder
The remainder is still positive ($ 1 > 0 $), so we will continue with division.
Step 16 :
Divide $ 13 $ by $ \color{blue}{ 1 } $ and get the remainder
The remainder is zero => GCD is the last divisor $ \color{blue}{ \boxed { 1 }} $.
We can summarize an algorithm into a following table.
139024789 | : | 93278890 | = | 1 | remainder ( 45745899 ) | ||||||||||||||||||||||||||||||
93278890 | : | 45745899 | = | 2 | remainder ( 1787092 ) | ||||||||||||||||||||||||||||||
45745899 | : | 1787092 | = | 25 | remainder ( 1068599 ) | ||||||||||||||||||||||||||||||
1787092 | : | 1068599 | = | 1 | remainder ( 718493 ) | ||||||||||||||||||||||||||||||
1068599 | : | 718493 | = | 1 | remainder ( 350106 ) | ||||||||||||||||||||||||||||||
718493 | : | 350106 | = | 2 | remainder ( 18281 ) | ||||||||||||||||||||||||||||||
350106 | : | 18281 | = | 19 | remainder ( 2767 ) | ||||||||||||||||||||||||||||||
18281 | : | 2767 | = | 6 | remainder ( 1679 ) | ||||||||||||||||||||||||||||||
2767 | : | 1679 | = | 1 | remainder ( 1088 ) | ||||||||||||||||||||||||||||||
1679 | : | 1088 | = | 1 | remainder ( 591 ) | ||||||||||||||||||||||||||||||
1088 | : | 591 | = | 1 | remainder ( 497 ) | ||||||||||||||||||||||||||||||
591 | : | 497 | = | 1 | remainder ( 94 ) | ||||||||||||||||||||||||||||||
497 | : | 94 | = | 5 | remainder ( 27 ) | ||||||||||||||||||||||||||||||
94 | : | 27 | = | 3 | remainder ( 13 ) | ||||||||||||||||||||||||||||||
27 | : | 13 | = | 2 | remainder ( 1 ) | ||||||||||||||||||||||||||||||
13 | : | 1 | = | 13 | remainder ( 0 ) | ||||||||||||||||||||||||||||||
GCD = 1 |
This solution can be visualized using a Venn diagram.
The GCD equals the product of the numbers at the intersection.