STEP 1: find radius $ r $
To find radius $ r $ use formula:
$$ V = \dfrac{ r ^{ 2 } \cdot h \cdot \pi}{ 3 } $$After substituting $ V = 252\pi $ and $ h = 21 $ we have:
$$ 252\pi = \dfrac{ r ^{ 2 } \cdot 21 \cdot \pi}{ 3 } $$$$ 252\pi \cdot 3 = r ^{ 2 } \cdot 21 \cdot \pi $$$$ 756\pi = 21 \cdot r ^{ 2 } \cdot \pi $$$$ r ^{ 2 } = \dfrac{ 756\pi}{ 21 \, \pi } $$$$ r ^{ 2 } = 36 $$$$ r = \sqrt{ 36 } $$$$ r = 6 $$STEP 2: find side $ l $
To find side $ l $ use Pythagorean Theorem:
$$ r^2 + h^2 = l^2 $$After substituting $ r = 6 $ and $ h = 21 $ we have:
$$ 6^2 + 21^2 = l^2 $$ $$ 36 + 441 = l^2 $$ $$ l^2 = 477 $$ $$ l = \sqrt{ 477 } $$$$ l = 3 \sqrt{ 53 } $$STEP 3: find Curved Surface Area $ CSA $
To find Curved Surface Area $ CSA $ use formula:
$$ CSA = r \cdot l \cdot \pi$$After substituting $ r = 6 $ and $ l = 3 \sqrt{ 53 } $ we have:
$$ CSA = 6 \cdot 3 \sqrt{ 53 } \cdot \pi$$$$ CSA = 6 \cdot 3 \sqrt{ 53 } \cdot \pi $$$$ CSA = 18 \sqrt{ 53 }\pi $$