STEP 1: find radius $ r $
To find radius $ r $ use formula:
$$ d = 2 \cdot r $$After substituting $ d = 18 $ we have:
$$ 18 = 2 \cdot r $$ $$ r = \dfrac{ 18 }{ 2 } $$ $$ r = 9 $$STEP 2: find base area $ AB $
To find base area $ AB $ use formula:
$$ AB = r^2 \cdot \pi $$After substituting $ r = 9 $ we have:
$$ AB = 9^2 \cdot \pi $$ $$ AB = 81 \cdot \pi $$STEP 3: find side $ l $
To find side $ l $ use Pythagorean Theorem:
$$ r^2 + h^2 = l^2 $$After substituting $ r = 9 $ and $ h = 12 $ we have:
$$ 9^2 + 12^2 = l^2 $$ $$ 81 + 144 = l^2 $$ $$ l^2 = 225 $$ $$ l = \sqrt{ 225 } $$$$ l = 15 $$STEP 4: find Curved Surface Area $ CSA $
To find Curved Surface Area $ CSA $ use formula:
$$ CSA = r \cdot l \cdot \pi$$After substituting $ r = 9 $ and $ l = 15 $ we have:
$$ CSA = 9 \cdot 15 \cdot \pi$$$$ CSA = 9 \cdot 15 \cdot \pi $$$$ CSA = 135\pi $$STEP 5: find area $ A $
To find area $ A $ use formula:
$$ A = AB + CSA $$After substituting $ AB = 81\pi $ and $ CSA = 135\pi $ we have:
$$ A = 81\pi + 135\pi $$ $$ A = 81\pi + 135\pi $$ $$ A = 216\pi $$