STEP 1: find radius $ r $
To find radius $ r $ use formula:
$$ d = 2 \cdot r $$After substituting $d = 46\, \text{cm}$ we have:
$$ 46\, \text{cm} = 2 \cdot r $$ $$ r = \dfrac{ 46\, \text{cm} }{ 2 } $$ $$ r = 23\, \text{cm} $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ V = \dfrac{ h ^{ 2 } \cdot r \cdot \pi}{ 3 } $$After substituting $V = 22325\, \text{cm}$ and $r = 23\, \text{cm}$ we have:
$$ 22325\, \text{cm} = \dfrac{ h ^{ 2 } \cdot \left( 23\, \text{cm} \right)^{4} \cdot \pi}{ 3 } $$$$ 22325\, \text{cm} \cdot 3 = h ^{ 2 } \cdot \left( 23\, \text{cm} \right)^{4} \cdot \pi $$$$ 66975\, \text{cm} = 23\, \text{cm} \cdot h ^{ 2 } \cdot \pi $$$$ h ^{ 2 } = \dfrac{ 66975\, \text{cm}}{ 23\, \text{cm} \, \pi } $$$$ h ^{ 2 } \approx 926.9024 $$$$ h \approx \sqrt{ 926.9024 } $$$$ h \approx 30.4451 $$