Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x^2}{75}-\frac{\frac{1}{3}}{x}+\frac{5}{12}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x^2}{75}-\frac{1}{3x}+\frac{5}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3x^3-75}{225x}+\frac{5}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{36x^3+1125x-900}{2700x}\end{aligned} $$ | |
① | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{1}{3} }{x} & \xlongequal{\text{Step 1}} \frac{1}{3} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot 1 }{ 3 \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 1 }{ 3x } \end{aligned} $$ |
② | To subtract raitonal expressions, both fractions must have the same denominator. |
③ | To add raitonal expressions, both fractions must have the same denominator. |