Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{\frac{x^2}{5}}{x}}{10}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{x^2}{5x}}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x^2}{50x}\end{aligned} $$ | |
① | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2}{5} }{x} & \xlongequal{\text{Step 1}} \frac{x^2}{5} \cdot \frac{\color{blue}{1}}{\color{blue}{x}} \xlongequal{\text{Step 2}} \frac{ x^2 \cdot 1 }{ 5 \cdot x } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 5x } \end{aligned} $$ |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2}{5x} }{10} & \xlongequal{\text{Step 1}} \frac{x^2}{5x} \cdot \frac{\color{blue}{1}}{\color{blue}{10}} \xlongequal{\text{Step 2}} \frac{ x^2 \cdot 1 }{ 5x \cdot 10 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 50x } \end{aligned} $$ |