Tap the blue circles to see an explanation.
$$ \begin{aligned}t^2+2t-\frac{15}{4}\frac{t^2}{t}-\frac{3}{t}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}t^2+2t-\frac{15t^2}{4t}-\frac{3}{t} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4t^3-7t^2}{4t}-\frac{3}{t} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4t^4-7t^3-12t}{4t^2}\end{aligned} $$ | |
① | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{15}{4} \cdot \frac{t^2}{t} \xlongequal{\text{Step 1}} \frac{ 15 \cdot t^2 }{ 4 \cdot t } \xlongequal{\text{Step 2}} \frac{ 15t^2 }{ 4t } \end{aligned} $$ |
② | Step 1: Write $ t^2+2t $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | To subtract raitonal expressions, both fractions must have the same denominator. |