Tap the blue circles to see an explanation.
$$ \begin{aligned}j(j+2)^2-(4-f)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}j(1j^2+4j+4)-(16-8f+f^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}j^3+4j^2+4j-(16-8f+f^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}j^3+4j^2+4j-16+8f-f^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}j^3-f^2+4j^2+8f+4j-16\end{aligned} $$ | |
① | Find $ \left(j+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ j } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(j+2\right)^2 = \color{blue}{j^2} +2 \cdot j \cdot 2 + \color{red}{2^2} = j^2+4j+4\end{aligned} $$Find $ \left(4-f\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 4 } $ and $ B = \color{red}{ f }$. $$ \begin{aligned}\left(4-f\right)^2 = \color{blue}{4^2} -2 \cdot 4 \cdot f + \color{red}{f^2} = 16-8f+f^2\end{aligned} $$ |
② | Multiply $ \color{blue}{j} $ by $ \left( j^2+4j+4\right) $ $$ \color{blue}{j} \cdot \left( j^2+4j+4\right) = j^3+4j^2+4j $$ |
③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( 16-8f+f^2 \right) = -16+8f-f^2 $$ |
④ | Combine like terms: $$ j^3-f^2+4j^2+8f+4j-16 = j^3-f^2+4j^2+8f+4j-16 $$ |