Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{i}{2}\cdot(1+i)-3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{i^2+i}{2}-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-1+i}{2}-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{i-7}{2}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{i}{2} $ by $ 1+i $ to get $ \dfrac{i^2+i}{2} $. Step 1: Write $ 1+i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{i}{2} \cdot 1+i & \xlongequal{\text{Step 1}} \frac{i}{2} \cdot \frac{1+i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ i \cdot \left( 1+i \right) }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ i+i^2 }{ 2 } = \frac{i^2+i}{2} \end{aligned} $$ |
| ② | $$ i^2 = -1 $$ |
| ③ | Subtract $3$ from $ \dfrac{-1+i}{2} $ to get $ \dfrac{ \color{purple}{ i-7 } }{ 2 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |