Tap the blue circles to see an explanation.
$$ \begin{aligned}i\frac{(4+i)^3}{(2-2i)^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}i\frac{64+48i+12i^2+i^3}{4-8i+4i^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}i\frac{64+48i-12-i}{4-8i-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}i\frac{47i+52}{-8i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}i\frac{-47+52i}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{52i^2-47i}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{-52-47i}{8}\end{aligned} $$ | |
① | Find $ \left(4+i\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = 4 $ and $ B = i $. $$ \left(4+i\right)^3 = 4^3+3 \cdot 4^2 \cdot i + 3 \cdot 4 \cdot i^2+i^3 = 64+48i+12i^2+i^3 $$ |
② | Find $ \left(2-2i\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2 } $ and $ B = \color{red}{ 2i }$. $$ \begin{aligned}\left(2-2i\right)^2 = \color{blue}{2^2} -2 \cdot 2 \cdot 2i + \color{red}{\left( 2i \right)^2} = 4-8i+4i^2\end{aligned} $$ |
③ | $$ 12i^2 = 12 \cdot (-1) = -12 $$ |
④ | $$ i^3 = \color{blue}{i^2} \cdot i =
( \color{blue}{-1}) \cdot i =
- \, i $$ |
⑤ | $$ 4i^2 = 4 \cdot (-1) = -4 $$ |
⑥ | Combine like terms: $$ \color{blue}{64} + \color{red}{48i} \color{blue}{-12} \color{red}{-i} = \color{red}{47i} + \color{blue}{52} $$ |
⑦ | Combine like terms: $$ \, \color{blue}{ \cancel{4}} \,-8i \, \color{blue}{ -\cancel{4}} \, = -8i $$ |
⑧ | Divide $ \, 52+47i \, $ by $ \, -8i \, $ to get $\,\, \dfrac{-47+52i}{8} $. ( view steps ) |
⑨ | Step 1: Write $ i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} i \cdot \frac{-47+52i}{8} & \xlongequal{\text{Step 1}} \frac{i}{\color{red}{1}} \cdot \frac{-47+52i}{8} \xlongequal{\text{Step 2}} \frac{ i \cdot \left( -47+52i \right) }{ 1 \cdot 8 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -47i+52i^2 }{ 8 } = \frac{52i^2-47i}{8} \end{aligned} $$ |
⑩ | $$ 52i^2 = 52 \cdot (-1) = -52 $$ |